Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 528
Filtrar
1.
Mod Pathol ; 37(3): 100426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219952

RESUMO

Perivascular epithelioid cell tumors (PEComas) are rare mesenchymal tumors that express smooth muscle and melanocytic makers. Diagnosis of PEComas can be challenging due to focal or lost expression of traditional immunohistochemical markers, limited availability of molecular testing, and morphological overlap with much more common smooth muscle tumors. This study evaluates the use of glycoprotein nonmetastatic melanoma protein B (GPNMB) immunohistochemical staining as a surrogate marker for TSC1/2/MTOR alteration or TFE3 rearrangement to differentiate PEComas from other mesenchymal tumors. Cathepsin K was also assessed for comparison. A total of 399 tumors, including PEComas, alveolar soft part sarcomas, and other histologic PEComa mimics, were analyzed using GPNMB and cathepsin K immunohistochemistry. GPNMB expression was seen in all PEComas and alveolar soft part sarcomas with the majority showing diffuse and moderate-to-strong labeling, whereas other sarcomas were negative or showed focal labeling. When a cutoff of diffuse and at least moderate staining was used, GPNMB demonstrated 95% sensitivity and 97% specificity in distinguishing PEComas from leiomyosarcoma, well-differentiated/dedifferentiated liposarcomas, and undifferentiated pleomorphic sarcomas. Cathepsin K with a cutoff of any labeling had lower sensitivity (78%) and similar specificity (94%) to GPNMB. This study highlights GPNMB as a highly sensitive marker for PEComas and suggests its potential use as an ancillary tool within a panel of markers for accurate classification of these tumors.


Assuntos
Melanoma , Neoplasias de Células Epitelioides Perivasculares , Receptores Fc , Sarcoma , Humanos , Imuno-Histoquímica , Catepsina K/metabolismo , Melanoma/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias de Células Epitelioides Perivasculares/diagnóstico , Neoplasias de Células Epitelioides Perivasculares/patologia , Glicoproteínas , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Glicoproteínas de Membrana
2.
J Mol Endocrinol ; 72(3)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261314

RESUMO

Follicle-stimulating hormone (FSH) accelerates osteoporosis in postmenopausal women, while the underlying mechanism remains uncharacterized. N6-methyladenosine (m6A) is one of the most important regulations in the development of osteoporosis. In this study, we aimed to investigate the role of FSH in m6A modification and osteoclast function. Here, we showed that FSH upregulated m6A levels in osteoclasts via stimulating methyltransferase-like 3 (METTL3) protein expression. FSH enhanced osteoclast migration, while the knockdown of METTL3 eliminated this enhancement. Both MeRIP-seq and RNA sequencing identified that cathepsin K (CTSK) is the potential downstream target of METTL3. Knockdown of CTSK reduced FSH-upregulated osteoclast migration. Furthermore, silencing METTL3 decreased CTSK mRNA stability. Finally, FSH induced phosphorylation of cyclic-AMP response element-binding protein (CREB), while silencing of CREB attenuated the effects of FSH on the promoter transcriptional activity of Mettl3 and CTSK/METTL3 protein. Taken together, these findings indicate that FSH promotes osteoclast migration via the CREB/METTL3/CTSK signaling pathway, which may provide a potential target for suppressing osteoclast mobility and postmenopausal osteoporosis therapy.


Assuntos
Adenina/análogos & derivados , Osteoclastos , Osteoporose , Humanos , Feminino , Osteoclastos/metabolismo , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Catepsina K/genética , Catepsina K/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo
3.
Biochem Biophys Res Commun ; 688: 149147, 2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-37948912

RESUMO

Heterotopic ossification (HO) is abnormal bone growth in soft tissues that results from injury, trauma, and rare genetic disorders. Bone morphogenetic proteins (BMPs) are critical osteogenic regulators which are involved in HO. However, it remains unclear how BMP signaling interacts with other extracellular stimuli to form HO. To address this question, using the Cre-loxP recombination system in mice, we conditionally expressed the constitutively activated BMP type I receptor ALK2 with a Q207D mutation (Ca-ALK2) in Cathepsin K-Cre labeled tendon progenitors (hereafter "Ca-Alk2:Ctsk-Cre"). Ca-Alk2:Ctsk-Cre mice were viable but they formed spontaneous HO in the Achilles tendon. Histological and molecular marker analysis revealed that HO is formed via endochondral ossification. Ectopic chondrogenesis coincided with enhanced GLI1 production, suggesting that elevated Hedgehog (Hh) signaling is involved in the pathogenesis of HO. Interestingly, focal adhesion kinase, a critical mediator for the mechanotransduction pathway, was also activated in Ca-Alk2:Ctsk-Cre mice. Our findings suggest that enhanced BMP signaling may elevate Hh and mechanotransduction pathways, thereby causing HO in the regions of the Achilles tendon.


Assuntos
Mecanotransdução Celular , Ossificação Heterotópica , Camundongos , Animais , Catepsina K/metabolismo , Proteínas Hedgehog , Ossificação Heterotópica/metabolismo , Tendões/metabolismo
4.
Sci Rep ; 13(1): 20813, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012303

RESUMO

Osteoclasts uniquely resorb calcified bone matrices. To exert their function, mature osteoclasts maintain the cellular polarity and directional vesicle trafficking to and from the resorbing bone surface. However, the regulatory mechanisms and pathophysiological relevance of these processes remain largely unexplored. Bone histomorphometric analyses in Ccr5-deficient mice showed abnormalities in the morphology and functional phenotype of their osteoclasts, compared to wild type mice. We observed disorganized clustering of nuclei, as well as centrosomes that organize the microtubule network, which was concomitant with impaired cathepsin K secretion in cultured Ccr5-deficient osteoclasts. Intriguingly, forced expression of constitutively active Rho or Rac restored these cytoskeletal phenotypes with recovery of cathepsin K secretion. Furthermore, a gene-disease enrichment analysis identified that PLEKHM1, a responsible gene for osteopetrosis, which regulates lysosomal trafficking in osteoclasts, was regulated by CCR5. These experimental results highlighted that CCR5-mediated signaling served as an intracellular organizer for centrosome clustering in osteoclasts, which was involved in the pathophysiology of bone metabolism.


Assuntos
Reabsorção Óssea , Osteoclastos , Receptores CCR5 , Animais , Camundongos , Osso e Ossos/metabolismo , Matriz Óssea/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Catepsina K/metabolismo , Centrossomo/metabolismo , Osteoclastos/metabolismo , Receptores CCR5/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(46): e2312677120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931101

RESUMO

We have previously reported that the cortical bone thinning seen in mice lacking the Wnt signaling antagonist Sfrp4 is due in part to impaired periosteal apposition. The periosteum contains cells which function as a reservoir of stem cells and contribute to cortical bone expansion, homeostasis, and repair. However, the local or paracrine factors that govern stem cells within the periosteal niche remain elusive. Cathepsin K (Ctsk), together with additional stem cell surface markers, marks a subset of periosteal stem cells (PSCs) which possess self-renewal ability and inducible multipotency. Sfrp4 is expressed in periosteal Ctsk-lineage cells, and Sfrp4 global deletion decreases the pool of PSCs, impairs their clonal multipotency for differentiation into osteoblasts and chondrocytes and formation of bone organoids. Bulk RNA sequencing analysis of Ctsk-lineage PSCs demonstrated that Sfrp4 deletion down-regulates signaling pathways associated with skeletal development, positive regulation of bone mineralization, and wound healing. Supporting these findings, Sfrp4 deletion hampers the periosteal response to bone injury and impairs Ctsk-lineage periosteal cell recruitment. Ctsk-lineage PSCs express the PTH receptor and PTH treatment increases the % of PSCs, a response not seen in the absence of Sfrp4. Importantly, in the absence of Sfrp4, PTH-dependent increase in cortical thickness and periosteal bone formation is markedly impaired. Thus, this study provides insights into the regulation of a specific population of periosteal cells by a secreted local factor, and shows a central role for Sfrp4 in the regulation of Ctsk-lineage periosteal stem cell differentiation and function.


Assuntos
Osteogênese , Nicho de Células-Tronco , Camundongos , Animais , Catepsina K/metabolismo , Periósteo/metabolismo , Diferenciação Celular/genética , Via de Sinalização Wnt , Proteínas Proto-Oncogênicas/metabolismo
6.
Sci Rep ; 13(1): 19320, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935734

RESUMO

Oral lichen planus (OLP) is a chronic inflammatory disease associated with T cell infiltration. The crosstalk between oral epithelium and mucosal T cells was considered to be crucial in the pathogenesis of OLP. Here, we selectively extracted the normal epithelium (NE) and lesional epithelium (LE) of buccal mucosa specimens from three patients with OLP by laser capture microdissection due to identify the pathogenic factors. Cathepsin K (CTSK) was identified as one of common upregulated genes in the LE by DNA microarray. Immunohistochemically, CTSK was distinctly detected in and around the LE, while it was rarely seen in the NE. Recent studies showed that CTSK enhanced Toll-like receptor 9 (TLR9) signaling in antigen-presenting cells, leading to Th17 cell differentiation. TLR9 expression mainly co-localized with CD123+ plasmacytoid dendritic cells (pDCs). The number of RORγt-positive cells correlated with that of CTSK-positive cells in OLP tissues. CD123+ pDCs induced the production of Th17-related cytokines (IL-6, IL-23, and TGF-ß) upon stimulation with TLR9 agonist CpG DNA. Moreover, single cell RNA-sequencing analysis revealed that TLR9-positive pDCs enhanced in genes associated with Th17 cell differentiation in comparison with TLR9-negative pDCs. CTSK could induce Th17-related production of CD123+ pDCs via TLR9 signaling to promote the pathogenesis of OLP.


Assuntos
Líquen Plano Bucal , Humanos , Líquen Plano Bucal/patologia , Receptor Toll-Like 9/metabolismo , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Catepsina K/genética , Catepsina K/metabolismo , Células Dendríticas , Epitélio/metabolismo , Imunidade , Receptor 7 Toll-Like/metabolismo , Células Th17/metabolismo
7.
Stem Cell Res Ther ; 14(1): 319, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936199

RESUMO

BACKGROUND: Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferable regarding the differentiation of osteoclasts. METHODS: In this study, we compared the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. The results were validated using qRT-PCR throughout the differentiation stages. RESULTS: Embryoid body-based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. CONCLUSIONS: The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Osteoclastos , Leucócitos Mononucleares , Catepsina K/metabolismo , Diferenciação Celular
8.
Cell Death Dis ; 14(6): 366, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330581

RESUMO

The Raptor signaling pathway is a critical point of intervention in the invasion and progression of cancer. The non-receptor tyrosine kinase Src-mediated phosphorylation of OTUB1-Y26 plays a critical role in Raptor stabilization, whereas cathepsin K inhibitor (odanacatib; ODN) and knockdown (siRNA) induce Raptor destabilization. However, the mechanisms involved in cathepsin K inhibition-induced OTUB1-Y26 phosphorylation in Raptor stabilization have not been yet elucidated. This study showed that cathepsin K inhibition activates SHP2, a tyrosine phosphatase, that dephosphorylates OTUB1 and destabilizes Raptor, whereas SHP2 deletion and pharmacological inhibition increase OTUB1-Y26 phosphorylation and Raptor expression. SHP2 deletion also led to the inhibition of ODN-induced mitochondrial ROS, fusion, and dysfunction. Furthermore, cathepsin K inhibition phosphorylated spleen tyrosine kinase (Syk) at Y525 and Y526, resulting in the SHP2-mediated dephosphorylation of OTUB1-Y26. Collectively, our findings identified Syk not only as an upstream tyrosine kinase required for SHP2 activation but also showed a critical mechanism that regulates ODN-induced Raptor downregulation and mitochondrial dysfunction. In conclusion, Syk/SHP2/Src/OTUB1 axis-mediated signaling can act as a therapeutic target in cancer management.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 11 , Transdução de Sinais , Catepsina K/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Fosforilação , Mitocôndrias/metabolismo
9.
Molecules ; 28(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241936

RESUMO

BACKGROUND: Cathepsin K, which is involved in bone resorption, is a good target for treating osteoporosis, but no clinically approved medicine has been developed. Recently, allosteric inhibitors with high specificity and few side effects have been attracting attention for use in new medicines. METHODS: Cathepsin K inhibitors were isolated from the methanol extract of Chamaecrista nomame (Leguminosae) using cathepsin K inhibition activity-assisted multi-step chromatography. Standard kinetic analysis was employed to examine the mechanism of cathepsin K inhibition when an isolated inhibitor and its derivative were used. The allosteric binding of these cathepsin K inhibitors was supported by a docking study using AutoDock vina. Combinations of allosteric cathepsin K inhibitors expected to bind to different allosteric sites were examined by means of cathepsin K inhibition assay. RESULTS: Two types of cathepsin K inhibitors were identified in the methanol extract of Chamaecrista nomame. One type consisted of cassiaoccidentalin B and torachrysone 8-ß-gentiobioside, and inhibited both cathepsin K and B with similar inhibitory potential, while the other type of inhibitor consisted of pheophytin a, and inhibited cathepsin K but not cathepsin B, suggesting that pheophytin a binds to an allosteric site of cathepsin K. Kinetic analysis of inhibitory activity suggested that pheophytin a and its derivative, pheophorbide b, bind allosterically to cathepsin K. This possibility was supported by a docking study on cathepsin K. The cathepsin K inhibitory activity of pheophytin a and pheophorbide b was enhanced by combining them with the allosteric inhibitors NSC 13345 and NSC94914, which bind to other allosteric sites on cathepsin K. CONCLUSIONS: Different allosteric inhibitors that bind to different sites in combination, as shown in this study, may be useful for designing new allosteric inhibitory drugs with high specificity and few side effects.


Assuntos
Reabsorção Óssea , Metanol , Humanos , Catepsina K/metabolismo , Sítio Alostérico , Cinética , Catepsinas/metabolismo
10.
J Ethnopharmacol ; 315: 116641, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37236379

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Oldenlandia umbellata L., belonging to the Rubiaceae family, is an annual plant possessing anti-inflammatory and antipyretic, anti-nociceptive, anti-bacterial, anti-helminthic, antioxidant and hepatoprotective activities and used in traditional medicine to treat inflammation and respiratory diseases. AIM OF THE STUDY: The present study aims to evaluate the anti-osteoporotic effect of Methanolic extract of O.umbellata in MG-63 cells and RANKL-stimulated RAW 264.7 cells. MATERIALS AND METHODS: The methanolic extract from the aerial parts of O.umbellata was subjected to metabolite profiling. The anti-osteoporotic effect of MOU was assessed in MG-63 cells and RANKL-stimulated RAW 264.7 cells. In MG-63 cells, the proliferative effect of MOU was evaluated using MTT assay, ALP assay, Alizarin red staining, ELISA and western blot. Similarly, the anti-osteoclastogenic effect of MOU was assessed in RANKL-stimulated RAW 264.7 cells via MTT, TRAP staining and western blot. RESULTS: LC-MS metabolite profiling showed the presence of 59 phytoconstituents including scandoside, scandoside methyl ester, deacetylasperuloside, asperulosidic acid, and cedrelopsin in MOU. In MG-63 cells, MOU has increased the proliferation of osteoblast cells and ALP activity, thereby increasing bone mineralization. ELISA results showed increased levels of osteogenic markers such as osteocalcin and osteopontin in the culture media. Western blot analysis showed inhibition of GSK3ß protein expression and increased the expression levels of ß-catenin, Runx-2, col 1 and osterix, promoting osteoblast differentiation. In RANKL-stimulated RAW 264.7 cells, MOU did not elicit any significant cytotoxicity; instead, it suppressed the osteoclastogenesis reducing the osteoclast number. MOU has reduced TRAP activity in a dose-dependent manner. MOU inhibited the TRAF6, NFATc1, c-Jun, C-fos and cathepsin K expression, thereby inhibiting osteoclast formation. CONCLUSION: In conclusion, MOU promoted osteoblast differentiation via inhibiting GSK3ß and activating Wnt/ß catenin signalling and its transcription factors, including ß catenin, Runx2 and Osterix. Similarly, MOU inhibited osteoclast formation by inhibiting the expression of TRAF6, NFATc1, c-Jun, C-fos and cathepsin K in RANK-RANKL signalling. Finally, it can be emphasised that O.umbellata is a potential source of therapeutic leads for the treatment of osteoporosis.


Assuntos
Osteogênese , beta Catenina , Camundongos , Animais , Células RAW 264.7 , beta Catenina/metabolismo , Catepsina K/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Osteoclastos , Diferenciação Celular , Osteoblastos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Via de Sinalização Wnt , Proliferação de Células , Ligante RANK/metabolismo , Fatores de Transcrição NFATC/metabolismo
11.
Caries Res ; 57(2): 159-166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36806002

RESUMO

Cathepsin K (catK) modulates the degradation of dentin collagen. This study aimed to evaluate the effects of catK inhibitors on dentin erosion. Dentin beams were eroded (4 times/d for 5 days) and immersed in deionized water (negative control), 0.1 M NaCl, 0.3 M NaCl, 0.5 M NaCl, or 1 µm odanacatib (each n = 16) for 30 min after each erosive challenge. Erosive dentin loss (EDL) and demineralized organic matrix (DOM) thickness were evaluated profilometrically. Additionally, dentin beams were demineralized, immersed in the respective solutions for 30 min each (n = 5), and then incubated in artificial saliva for 5 days. Dentin collage degradation was evaluated by quantifying the levels of the C-terminal peptide of type I collagen (CTX), C-terminal cross-linked telopeptide of type I collagen (ICTP), and hydroxyproline (HYP) in the incubation media. Significantly lower EDL and dentin collagen degradation (CTX, ICTP, and HYP) and thicker DOM layers were observed in the samples treated with 0.3 m NaCl and 1 µm odanacatib than in those treated with deionized water (all p < 0.05). The samples treated with 1 µm odanacatib showed significantly lower levels of CTX and HYP than those treated with 0.3 M NaCl (all p < 0.05). The present findings support the potential use of catK inhibitors in controlling dentin erosion.


Assuntos
Colágeno Tipo I , Cloreto de Sódio , Humanos , Catepsina K/metabolismo , Colágeno Tipo I/metabolismo , Cloreto de Sódio/farmacologia , Colágeno , Dentina
12.
Cell Chem Biol ; 30(2): 159-174.e8, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36696904

RESUMO

Cathepsin K (CatK) is a lysosomal cysteine protease whose highest expression is found in osteoclasts, which are the cells responsible for bone resorption. Investigations of the functions and physiological relevance of CatK have often relied on antibody-related techniques, which makes studying its activity patterns a challenging task. Hence, we developed a set of chemical tools for the investigation of CatK activity. We show that our probe is a valuable tool for monitoring the proteolytic activation of CatK during osteoclast formation. Moreover, we demonstrate that our inhibitor of CatK impedes osteoclastogenesis and bone resorption and that CatK is stored in its active form in osteoclasts within their lysosomal compartment and mainly in the ruffled borders of osteoclasts. Given that our probe recognizes active CatK within living cells without exhibiting any observed cytotoxicity in the several models tested, we expect that it would be well suited to theranostic applications in CatK-related diseases.


Assuntos
Reabsorção Óssea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Osteogênese , Catepsina K/metabolismo , Reabsorção Óssea/metabolismo
13.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36697252

RESUMO

Resident tissue macrophages are organ-specialized phagocytes responsible for the maintenance and protection of tissue homeostasis. It is well established that tissue diversity is reflected by the heterogeneity of resident tissue macrophage origin and phenotype. However, much less is known about tissue-specific phagocytic and proteolytic macrophage functions. Here, using a quantitative proteomics approach, we identify cathepsins as key determinants of phagosome maturation in primary peritoneum-, lung-, and brain-resident macrophages. The data further uncover cathepsin K (CtsK) as a molecular marker for lung phagosomes required for intracellular protein and collagen degradation. Pharmacological blockade of CtsK activity diminished phagosomal proteolysis and collagenolysis in lung-resident macrophages. Furthermore, profibrotic TGF-ß negatively regulated CtsK-mediated phagosomal collagen degradation independently from classical endocytic-proteolytic pathways. In humans, phagosomal CtsK activity was reduced in COPD lung macrophages and non-COPD lung macrophages exposed to cigarette smoke extract. Taken together, this study provides a comprehensive map of how peritoneal, lung, and brain tissue environment shapes phagosomal composition, revealing CtsK as a key molecular determinant of lung phagosomes contributing to phagocytic collagen clearance in lungs.


Assuntos
Catepsina K , Macrófagos , Fagossomos , Humanos , Catepsina K/metabolismo , Colágeno/metabolismo , Pulmão , Macrófagos/metabolismo , Fagossomos/metabolismo
14.
In Vitro Cell Dev Biol Anim ; 59(1): 10-18, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36689044

RESUMO

Osteoblasts produce the receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin, the inducer and the suppressor of osteoclast differentiation and activation. We previously proposed that the degradation of osteoprotegerin by lysine-specific gingipain of Porphyromonas gingivalis and neutrophil elastase is one of the mechanisms of bone resorption associated with infection and inflammation. In the present study, we found that cathepsin K (CTSK) also degraded osteoprotegerin in an acidic milieu and the buffer with a pH of 7.4. The 37 k fragment of osteoprotegerin produced by the reaction with CTSK was further degraded into low molecular weight fragments, including a 13 k fragment, depending on the reaction time. The N-terminal amino acid sequence of the 37 k fragment matched that of the intact osteoprotegerin, indicating that CTSK preferentially hydrolyzes the death domain-like region of osteoprotegerin, not its RANKL-binding region. The 13 k fragment of osteoprotegerin was the C-terminal 13 k portion within the RANKL-binding region of the 37 k fragment. Finally, CTSK restored RANKL-dependent osteoclast differentiation that was suppressed by the addition of osteoprotegerin. Collectively, CTSK is a possible positive regulator of osteoclastogenesis.


Assuntos
Osteogênese , Osteoprotegerina , Animais , Osteoprotegerina/metabolismo , Catepsina K/metabolismo , Glicoproteínas/metabolismo , Osteoclastos/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Transporte/metabolismo , Ligante RANK/metabolismo , Diferenciação Celular
15.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5882-5889, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36472007

RESUMO

This study aims to investigate the therapeutic effect of icariin(ICA) on thioacetamide(TAA)-induced femoral osteolysis in rats. RAW264.7 cells were treated with TAA and ICA. Cell counting kit-8(CCK-8) assay was used to detect cell proliferation, and tartrate-resistant acid phosphatase(TRAP) staining to examine the formation of osteoclasts. The expression of TRAP, cathepsin K, c-FOS, and NFATc1 in RAW264.7 cells was determined by Western blot and immunofluorescence method. Thirty-two SD rats were randomized into the control group, TAA group(intraperitoneal injection of TAA at 300 mg·kg~(-1)), ICA group(gavage of ICA at 600 mg·kg~(-1)) and TAA + ICA group(intraperitoneal injection of TAA at 300 mg·kg~(-1) and gavage of ICA at 600 mg·kg~(-1)). Administration was performed every other day for 6 weeks. Body weight and length of femur were recorded at execution. Pathological injury and osteoclast differentiation of femur were observed based on hematoxylin-eosin(HE) staining and TRAP staining, and the changes of bone metabolism-related indexes alkaline phosphatase(ALP), calcium(Ca), phosphorus(P), magnesium(Mg), and cross-linked N-telopeptide of type Ⅰ collagen(NTX-Ⅰ) in serum were detected. Three-point bending test and micro-CT were applied to evaluate the quality of femur, and Western blot to detect the levels of osteoclast-related proteins TRAP, cathepsin K, RANK, RANKL, p38, p-p38, ERK, p-ERK, JNK, p-JNK, c-Fos, and NFATc1. The results showed ICA could inhibit TAA-induced production of TRAP-positive cells, the expression of osteoclast-related proteins, and nuclear translocation of NFATc1. ICA alleviated the weight loss, reduction of femur length, and growth inhibition induced by TAA in SD rats. ICA ameliorated the decline of femur elastic modulus caused by TAA and significantly restored trabecular bone mineral density(BMD), trabecular pattern factor(Tb.Pf), trabecular number(Tb.N), trabecular thickness(Tb.Th), and structure model index(SMI), thus improving bone structure. Western blot results showed ICA suppressed femoral osteoclast differentiation induced by TAA through RANKL-p38/ERK-NFATc1 signaling pathway. ICA inhibits osteoclast differentiation and prevents TAA-induced osteolysis by down-regulating RANKL-p38/ERK-NFAT signaling pathway.


Assuntos
Reabsorção Óssea , Osteólise , Ratos , Animais , Osteoclastos , Catepsina K/genética , Catepsina K/metabolismo , Catepsina K/farmacologia , Tioacetamida/metabolismo , Tioacetamida/farmacologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osteólise/metabolismo , Osteólise/patologia , Diferenciação Celular , Ratos Sprague-Dawley , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo
16.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430239

RESUMO

Cathepsin K (CatK) is a part of the family of cysteine proteases involved in many important processes, including the degradation activity of collagen 1 and elastin in bone resorption. Changes in levels of CatK are associated with various pathological conditions, primarily related to bone and cartilage degradation, such as pycnodysostosis (associated with CatK deficiency), osteoporosis, and osteoarthritis (associated with CatK overexpression). Recently, the increased secretion of CatK is being highly correlated to vascular inflammation, hypersensitivity pneumonitis, Wegener granulomatosis, berylliosis, tuberculosis, as well as with tumor progression. Due to the wide spectrum of diseases in which CatK is involved, the design and validation of active site-specific inhibitors has been a subject of keen interest in pharmaceutical companies in recent decades. In this review, we summarized the molecular background of CatK and its involvement in various diseases, as well as its clinical significance for diagnosis and therapy.


Assuntos
Colágeno Tipo I , Cisteína Proteases , Catepsina K/metabolismo , Colágeno Tipo I/metabolismo , Osso e Ossos/metabolismo
17.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233118

RESUMO

Osteoarthritis (OA) is one of the most common joint pathologies and a major cause of disability among the population of developed countries. It manifests as a gradual degeneration of the cartilage and subchondral part of the bone, leading to joint damage. Recent studies indicate that not only the cells that make up the articular cartilage but also the synoviocytes, which build the membrane surrounding the joint, contribute to the development of OA. Therefore, the aim of the study was to determine the response to inflammatory factors of osteoarthritic synoviocytes and to identify proteins secreted by them that may influence the progression of OA. This study demonstrated that fibroblast-like synoviocytes of OA patients (FLS-OA) respond more strongly to pro-inflammatory stimulation than cells obtained from control patients (FLS). These changes were observed at the transcriptome level and subsequently confirmed by protein analysis. FLS-OA stimulated by pro-inflammatory factors [such as lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) were shown to secrete significantly more chemokines (CXCL6, CXCL10, and CXCL16) and growth factors [angiopoietin-like protein 1 (ANGPTL1), fibroblast growth factor 5 (FGF5), and insulin-like growth factor 2 (IGF2)] than control cells. Moreover, the translation of proteolytic enzymes [matrix metalloprotease 3 (MMP3), cathepsin K (CTSK), and cathepsin S (CTSS)] by FLS-OA is increased under inflammatory conditions. Our data indicate that the FLS of OA patients are functionally altered, resulting in an enhanced response to the presence of pro-inflammatory factors in the environment, manifested by the increased production of the previously mentioned proteins, which may promote further disease progression.


Assuntos
Osteoartrite , Somatomedinas , Sinoviócitos , Catepsina K/metabolismo , Células Cultivadas , Fator 5 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamação/patologia , Lipopolissacarídeos/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Osteoartrite/metabolismo , Somatomedinas/metabolismo , Membrana Sinovial/patologia , Sinoviócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Nutrients ; 14(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36235631

RESUMO

Monotropein (Mon) is a kind of iridoid glycoside plant secondary metabolite primarily present in some edible and medicinal plants. The aim of this study was to investigate the effect of Mon on lipopolysaccharide (LPS)-induced inflammatory bone loss in mice and osteoclasts (OCs) derived from bone marrow-derived macrophages (BMMs), and explore the mechanisms underlying the effect of Mon on LPS-induced osteoclastogenesis. It was found that Mon markedly attenuated deterioration of the bone micro-architecture, enhanced tissue mineral content (TMC) and bone volume/total volume (BV/TV), reduced structure model index (SMI) and trabecular separation/spacing (Tb.Sp) in the bone tissue and decreased the activities of tartrate resistant acid phosphatase-5b (TRACP-5b), receptor activator NF-κB (RANK), and receptor activator NF-κB ligand (RANKL) as well as the serum levels of interleukin 6 (IL-6) and interleukin 1ß (IL-1ß) in LPS-treated mice. In addition, Mon treatment reduced the number of TRAP positive OCs in the bone tissue of LPS-treated mice and also exerted a stronger inhibitory effect on formation, differentiation, and F-actin ring construction of OCs derived from BMMs. Mon significantly inhibited the expression of the nuclear factor of activated T-cells c1 (NFATc1) and the immediate early gene (C-Fos) and nuclear translocation of NFATc1 in LPS-treated OCs, thereby inhibiting the expression of matrix metalloproteinase-9 (MMP-9), cathepsin K (CtsK), and TRAP. Mon significantly inhibited the expression of TRAF6, phosphorylation of P65, and degradation of IKBα, thus inhibiting the activation of NF-κB pathway in LPS-induced inflammatory mice and OCs derived from BMMs, and also inhibited LPS-induced phosphorylation of protein kinase B (Akt) and Glycogen synthase kinase 3ß (GSK-3ß) in OCs derived from BMMs. In conclusion, these results suggested that Mon could effectively inhibit osteoclastogenesis both in vitro and in vivo and therefore may prove to be potential option for prevention and treatment of osteoclastic bone resorption-related diseases.


Assuntos
Reabsorção Óssea , Osteoclastos , Actinas/metabolismo , Animais , Reabsorção Óssea/metabolismo , Catepsina K/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Glicosídeos Iridoides/farmacologia , Iridoides , Ligantes , Lipopolissacarídeos/efeitos adversos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fosfatase Ácida Resistente a Tartarato/metabolismo
19.
Int Immunopharmacol ; 112: 109278, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36215870

RESUMO

Inflammatory bone destruction has gradually attracted attention worldwide and has been observed in several kinds of pathological bone diseases, such as osteoarthritis, osteomyelitis, rheumatic arthritis, and other infectious clinical trials in the skeletal system. In this regard, excessive osteoclasts and bone resorption activity participate in osteolytic processes. Thus, negatively modulating osteoclast differentiation and bone erosion has been considered an effective therapeutic strategy to limit the poor progression of inflammatory osteolysis. Astragalin (AST) is a bioactive component of traditional Chinese drugs, such as Rosa agrestis, which presents anti-inflammatory and antioxidant effects. However, it is unclear how AST may play an essential role in regulating the dynamic balance of the bone matrix by affecting osteoclastogenesis. This study found that AST could inhibit osteoclastic formation and bone resorption activity in a dose-dependent manner without cytotoxicity. Administration of AST also inhibited the expression of cathepsin K, c-Fos, NFATc1, and TRAP at different stages of mRNA and protein levels during osteoclastogenesis. Reactive oxygen species (ROS) signalling could also be modulated by treatment with AST during RANKL-induced osteoclast differentiation through the Nrf2-HO1 signalling pathway. Additionally, AST could negatively regulate mitogen-activated protein kinase (MAPK) signalling in this process. In vivo, AST significantly reduced lipopolysaccharide (LPS)-induced bone loss in an osteolytic mouse model. AST might be a promising therapeutic candidate for treating osteolytic bone diseases in the future.


Assuntos
Reabsorção Óssea , Osteólise , Camundongos , Animais , Osteólise/metabolismo , Osteogênese , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Catepsina K/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/uso terapêutico , Ligante RANK/metabolismo , Osteoclastos , Reabsorção Óssea/patologia , Transdução de Sinais , Anti-Inflamatórios/uso terapêutico , RNA Mensageiro/metabolismo , Diferenciação Celular
20.
Fish Physiol Biochem ; 48(5): 1377-1387, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36136164

RESUMO

Insulin-like growth factor 3 plays an important role in gonad development in teleost fish. Previous studies found that igf3 was specifically expressed in gonads of silver pomfret (Pampus argenteus). Unlike in other fish, IGF3 is a membrane protein in silver pomfret, and its specific role in gonads is unclear. Herein, we explored the importance of IGF3 in oogenesis and spermatogenesis in silver pomfret by analyzing gene expression and cellular localization. During follicular development, igf3 was detected in ovaries at both mRNA and protein levels during the critical stages of vitellogenesis (IV-VI). Localization analysis detected igf3 mRNA and protein in somatic cells, including theca and granulosa cells around oocytes. Similar to cathepsin L and cathepsin K, igf3 was consistently expressed in ovaries during vitellogenesis, suggesting that it might play a key role in vitellogenesis of oocytes. During spermatogenesis, igf3 mRNA and protein levels were high in stages II, IV, and V, similar to sycp3 and dmc1, and the highest igf3 mRNA and protein levels were reached in stage VI. Furthermore, igf3 mRNA and protein were detected in spermatogonia, spermatocytes, spermatids, and surrounding Sertoli cells, but not in spermatozoon, indicating that IGF3 might be involved in differentiation and meiosis of spermatogonia.


Assuntos
Perciformes , Somatomedinas , Masculino , Feminino , Animais , Catepsina L/metabolismo , Catepsina K/metabolismo , Estações do Ano , Somatomedinas/genética , Somatomedinas/metabolismo , Gônadas/metabolismo , Perciformes/genética , Perciformes/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixes/metabolismo , Proteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...